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SIMPLER STATIC PROBLEMS IN NONLINEAR THEORIES
OF RODS

J, L. ERICKSEN

Mechanics Department, The Johns Hopkins University, Baltimore, Maryland

Abstract-In many nonlinear theories of rods, certain inverse assumptions permit replacement of the governing
differential equations by algebraic relations. For a rather general abstract theory of rods, summarized below, we
illustrate how to accomplish this.

1. PRELIMINARIES

WE CONSIDER elastostatic theories of rods similar to those proposed by Cohen [1] and
Green and Laws [2], beginning with a summary of relevant features. Abstractly, a rod is
a curve equipped with two vectors. The curve is given parametrically by

r r(S), (1)

r being the position vector from some origin and S a material coordinate. The two vectors,
denoted by

and the tangent vector

r'(S)

tI. = 1,2, (2)

(3)

are to form a linearly independent set. Throughout, Greek indices take on values 1 and 2
and the summation convention applies to them. Further, primes denote derivatives with
respect to S. We impose no other constraints on these vectors, though the analysis is
easily modified to allow for constraints such as are imposed in classical theories. Essentially
the same analysis applies if there are more than two vectors. Cohen [IJ introduces three.

The stored energy associated with the element of material between Sand S+dS is
written

WdS,

where

W = W(S, r', r", d~, d~)

is an objective scalar. That is, if U represents any rigid rotation,

(4)

det U = 1, (5)

and if bars denote the transforms of vector arguments by U, e.g.

j" = Ur', f
lf

== Vi", ... "
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(6)
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then
W(S,r',r".d~,d~) = W(S,r',r",da,dal.

As a consequence, derivatives of W with respect to vectors transform as vectors. e.g.

aw oW=uar Dr'"

Further, (7) implies that W satisfies the identity

oW oW oW oW
r' x "17 + r" x + d, x ~d + d~ x ~ , == O.

cr (ia ada

(X)

(9)

Though we make no use of it, W is expressible in terms of the scalar and triple scalar
products formed from the vector arguments. By a straightforward calculation,

b JS

7 W dS = (F· br +G . br' + H" . bd,lj s, + JS

2 (K ' br + U ' bd,) dS. (10)
Sl Sj SI

where SI and S2 are any two constants, and

F
CfW
--G'or' ~

G
oW
~ f/ ~Icr

Ha oW
ad~ . (11 )

K = 0,

K -F'.

U ==~: - (~~r-
Equilibrium equations are obtained by equating K and La to specified functions, repre
senting generalized forces applied along the rod. For specifications of the type

a<1>
-ad'

a

where
<1> = <1>(da),

we can of course eliminate the integral term in the right member of (91, if we replace W by
W +<1>. If <1> is objective, the modified energy has the same properties as <1> and our analysis
would apply. For simplicity, we restrict our attention to cases where these forces vanish,

Then, using (11),

K La = O. (12)

(13)F = ~jjV (~W)' a = const.
ar' ar"

This integral of the equilibrium equations represents the requirement that the resultant
force on any section of the rod must vanish. Balance of moments gives rise to another
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integral. To obtain it, consider a variation corresponding to an infinitesimal rigid motion

6r = ro x r,

ro being an arbitrary constant vector. Because ofobjectivity, the left member of(10) vanishes,
so we obtain

r x F + r' x G + d, x H' = b = const., (14)

assuming (12) holds. One more integral obtains in cases where W does not depend explicitly
on S. To obtain it set

6r = r',

in (10), use

ISl IS' IS'6 W dS = W'dS = W ,
s, s, s,

which gives

W - F . r' - G . rn
- H' . d~ = a = const. (15)

This independency, as well as the form of Ware not preserved under nonlinear trans
formations of the material coordinate S, so an integral similar to (15) can be obtained in
some cases where W depends explicitly on S.

That these integrals are satisfied does not imply that the equilibrium equations hold.
Of course, K = 0 when (13) applies. Differentiating (14) and using (13) and (9), we obtain
the consequence

Dotting this with d! and d2 , we see that

so L' lies in the plane determined by d! and d2 • It then follows easily that there exist scalars
IX, fJ and y such that

v = ad! +fJd 2 ,

L2 = {3d! +yd2 .

(16)

Thus, to satisfy the equilibrium equations, it is necessary to add conditions implying that
these scalars vanish. Intuitively, these conditions imply balance of resultant force and
moment, but the generalized forces include also double forces without moment, which
must also be appropriately balanced. If we add constraints requiring d1 and d2 to be of
fixed magnitude and to include a fixed angle, equilibrium equations are of the form (16),
the scalars being then Lagrange multipliers, so no further conditions are required. Generally,
(15) yields an independent consequence which can be reduced to the form

(17)
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2. UNIFORM STATES

The vector arguments upon which W depends serve to define the local state. Because of
objectivity, two states which differ by a rotation are essentially the same. Thus, we say that
a rod is in a uniform state when the state at one point differs from that at any other by such
a rotation. Formally

r' = UR',

r" = UR",
(18)

d, = UO"

d~ = UO~,

where U satisfies (5) and capital letters denote values at a fixed point, say S = O. Here LJ
may depend on S, subject to the condition that

U = 1 when S = o.
We set

and denote by 00 the corresponding axial vector such that, for any vector v,

fiv = 00 x v.

For consistency,

r" = (UR')' = fiUR'

= UR" = UfioR',

where

Thus

(fiLJ - Ufio)R' = O.

Similarly

(fiU - Ufio)O, = O.

Thus, R' and D, being linearly independent,

fi = UfioU r ,

or, equivalently,

00 = Uooo.

Thus

00' = fiLJooo = noo = 00 x 00 = O.

Thus 00 is a constant vector, such that

Uoo = 00.

(19)

(20)

(21 )

(22)

(23)
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From the well-known properties of rigid motions with constant angular velocity, we can
prescribe an arbitrary constant vector ro and determine the corresponding rotation U,
which, using (19), is uniquely determined by roo It will satisfy (23).

Now, from (18) and (22)
rO = nr' = ro x r',

which can be integrated to give
r' - ro x r = c = constant.

There is no loss in generality in assuming

c = bro,

(24)

(25)

(26)

which results from suitable adjustment of the point from which the position vector
originates. One more integration gives, for the curve,

r = UR+broS,

R = rls~o.

As is clear from (18), S differs from actual arc length on these curves by at most a linear
transformation. Along with (26), we of course have

d, = un,. (27)

Generally, the curves are circular helices, ro being parallel to the axis of the circular cylinder
on which they lie. One degenerate case, with b = 0, consists ofcircles, ro being perpendicular
to their planes. Another involves straight lines, parallel to ro, including the still more
degenerate case of straight lines with ro = O. As is perhaps obvious, the d, form constant
angles with the principal normal and binormal vectors of the curves, except for the straight
lines where these normals are not uniquely defined.

This provides a rather detailed characterization of uniform states, insofar as their
kinematics is concerned.

3. ALGEBRAIC SOLUTION

We now restrict our attention to cases where W does not depend explicitly on S. Among
other things, this implies that W is constant in every uniform state. Intuitively, a rod which,
when unloaded is, say, of variable curvature, is likely to require more work to straighten
the more bent parts. Generally, the assumption is not likely to be applicable unless the
unloaded rod can reasonably be considered to be in a uniform state. Even granting this,
there remain a variety of possibilities for deforming a rod from one uniform state to another.
Even the case where the final state is a straight line with constant d, can be non-trivial if
the initial state were a helical spring or a spiral column. However, for simplicity, we assume
that

ro =1= O. (28)

(29)

Cohen [IJ discusses a case where ro = O. In what follows, U refers to the particular rotation
associated with the uniform state considered. From (8) and (18) it follows that, in obvious
notation, we have relations of the type

aw oW
a? = Va-R o '
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so that

Thus
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(aW)' = 00 x ~.
i7rtr or"

aw oW
F =-::;::- - 00 x -;:;-;; = UFo,

(,r or

(30)

(31)

(32)

where the subscript zero indicates evaluation at S = O. Similarly

oW oW
L' = ---00x~ = UPad, ad~ ~o·

In effect, (31) and (32) characterize the generalized forces required to maintain the uniform
state.

If it is to be maintained by end loads alone, (13) and (31) require that

UFo = Fo. (33)

Since a rigid rotation changes every direction but its axis, this implies that, for some
constant scalar c,

Fo = coo. (34)

Clearly, (28) is important here. In the exceptional case where (28) fails, U = 1 and Fo is
unrestricted. If we arrange that (34) holds and

(35)

(31) and (32) will imply that the equilibrium equations (12) hold. The initial state is subject
to kinematic restrictions, viz.

R" = (0 x R',

D~ = wxD"

being thus determined by the three vectors R', Da and 00, which must be selected so as to
satisfy (34) and (35) for some value of the constant c. Thinking of c as given, (34) and (35)
give three vector equations for the three vectors R', D, and (0. We can not expect thes.e
conditions to uniquely determine the vectors, objectivity implying that, at best, they are
determined only to within a rigid rotation which, for the latter alternative, must have (0

as axis. Alternatively, we can specify (0, calculating R', D, and c. It is impossible to say
much about the existence or multiplicity of solutions without introducing some assumptions
concerning the form of W. Given any set of initial data satisfying these conditions, we can
calculate the U corresponding to 00, then use (26) and (27) to obtain the curve and d,.
these calculations being easy.

Now, using (23), (24), (25) and (34),

r x F = r x coo = (bw-r')c.

Using (14), we then have

(bw-r')c+r'xG+d,xHa:= M= b.
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Inspection of the left member shows, by reasoning like that used above,

M= UMo,

or

Ub = b,

so that b, the resultant moment acting on an end, has the property that

b II ro.

377

(36)

Here, the moment is calculated with respect to a particular point, bearing in mind the
reasoning leading to (25).

This provides a general format for obtaining solutions for uniform states by algebraic
methods. It would seem feasible to make a more detailed general study of the algebraic
problem, but we leave the problem here.
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A6cTpaKT-B 60nbllUlHcTBe HemlHellHblX TeOpl1ll cTeplKHell, HeKoTopble npe,o,nonOlKeHI1S1 I1HBePCI1I1
n03BonSlIOT 3aMeHI1Th onpe,o,enSlIOll.\l1e ,o,11<\l<\lepeHl.\l1anbHble ypaBHeHI1S1-anre6pal1'lecKHMH 3aBHCI1MOC
TSlMI1. AnSI 60nee o6ll.\ell a6cTpaKTHBHoll TeOpl1H CTeplKHell, npeACTaBneHHOll B pa6oTe, ,o,alOTCSI npl1Mephl
KaK BhmonHHTh TaKoe Tpe6oBaHl1e.


